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Earthquakes control the impulsive nature of crustal
helium degassing to the atmosphere
Antonio Caracausi 1✉, Dario Buttitta1,4, Matteo Picozzi2, Michele Paternoster 1,4 & Tony Alfredo Stabile 3

Deep fluids play active roles during the preparatory phases of large earthquakes and, through

their chemical signature, carry information about deep processes within the seismogenic

crust. Due to its inertness and isotopic signature, helium (the lightest noble gas) is a useful

tracer for investigating the processes of storage and transfer of fluids through the crust,

including those prior to hazardous earthquakes. Here we analyse a 12-year earthquake cat-

alogue from the Irpinia Fault Zone, Italy, to compute the 4He outputs from the seismogenetic

fault zones (from 104 to 106mol y−1 with an annual tenfold variability) and compare these

with estimates of long-term helium flux. We find that low-magnitude earthquakes (M < 4)

efficiently contribute to variations of the crustal helium output into the atmosphere which

supports the impulsive nature of He degassing in tectonically active continental regions. We

conclude that there is a quantitative relationship between crustal helium outputs and the

volume of fault zones, and suggest variations in helium flux may represent a gauge of

changes in the stress field that are related to the nucleation of earthquakes.
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The composition of the atmosphere and its evolution over
time was mainly driven by natural degassing from the
Earth interior1 up to the industrial age. Volcanic activity

fed the release of huge amounts of volatiles into atmosphere2,
making volcanoes major emitters of natural volatiles and hence
controlling the budget of volatiles in the atmosphere. Consider-
able attention has recently been paid to the outgassing in active
tectonic regions because faults are regions of enhanced perme-
ability and porosity where fluids can migrate through the whole
crust3,4, and these latter can in turn alter the faults state of stress
playing an active role in the generation of catastrophic
earthquakes5–9.

Noble gases are powerful tools for reconstructing the birth of the
Earth, its interior and the evolution over time10–13. Their isotopic
ratios are used to investigate the dynamics of natural processes
such as volcanic eruptions and earthquakes14–18. The lightest of the
noble gases is helium (hereafter He), whose low atomic mass
means that it is the only one that is able to escape into space10. He
on Earth is present as two isotopes, 3He and 4He, with the former
being mainly primordial and stored in the mantle, and the latter
continuously produced by uranium (U) and thorium (Th) decay in
the Earth’s interior10. The He flux in stable continental regions is
dominated by the radiogenic 4He that is produced in the crust
(mantle He <1%)19. In contrast, the primordial 3He escapes into
the atmosphere mainly from volcanoes and in regions of active
tectonic (from extensive to compressive), which makes the He
isotopic ratio (3He/4He) a powerful tool for recognizing mantle-
crust tectonics in the absence of other geological evidence4,19,20.

On the continents, groundwater acquires crustal 4He from the
rocks that constitute the aquifer, and from the underlying crust
during their circulation. Indeed, the large aquifers worldwide
contribute strongly to the discharge of crustal 4He into
atmosphere21. However, there is strong evidence that the con-
tinental degassing is also episodic22, and depends on large-scale
metamorphism and tectonics23–27. The latter degassing
mechanism implies large variabilities in time and space of the
crustal 4He outgassing to the atmosphere and also enhanced mass
transfer of fluids through the crust22,27. It remains a challenge to
quantify how the different processes occurring at depth (e.g.
metamorphism, tectonics, earthquakes) sustain the release of
crustal 4He and influence the impulsive nature of its degassing. In
this scenario, identifying quantitative constraints of the volume of
the fault zone at depth and the related capacity of rock underlying
the impulsive degassing of 4He would provide powerful tools for
understanding Earth degassing and the natural processes that are
associated with disastrous natural events such as earthquakes.

The enhancement of rock deformation due to tectonics results in
the opening and development of fractures within the crust at the
grain scale. Such microscale fracturation increases as an effect of
dilatation until macroscopic failures occur and the strain is released.
As a consequence of the dilatancy-related microscale fracturation,
crustal 4He stored in rocks is liberated faster from minerals and
rocks25,26,28 and it escapes towards the pore fluids and successively
through the crust to the atmosphere23. In this framework,
earthquake-related changes in volumetric strains increase the release
of crustal 4He from rocks27, highlighting the direct linkage between
seismicity and the impulsive nature of the crustal 4He degassing.
This evidence is augmented by rare observations of increases in the
amounts of crustal 4He in natural fluids associated with high-
magnitude earthquakes, such as the Kumamoto Earthquake in 2016
(M= 7.3) and the Kobe earthquake in 1995 (M= 7.2)29,30.

While brittle faults are often imagined as single planar struc-
tures, in reality they should be seen as complex volumetric fault
zones composed of a variety of internal structures. A fault zone
can be schematically simplified in two main structural regions
(Fig. 1): (1) the fault core and (2) the damage zone31. The fault

core is referred to the volume of highly localized strain and
intense shearing where most of the fault displacement is
accommodated by structures as gouges, cataclasites and breccias.
A damage zone is the broader volume around the fault core that
exhibits second-order structures (e.g., subsidiary faults, fractures,
and veins), which long-term evolution represents a key factor for
strain distribution, earthquake rupture propagation, and fluid
circulation through the crust. These regions represent the primary
crustal volumes contributing to the enhanced release of crustal
4He. Its release from the rock increases with fracture develop-
ment, with the 4He output reaching up to 104 times the crustal
4He steady-state flux23,32 that mainly dominates 4He degassing in
old stable continental regions22.

In this framework, it must be considered that both the damage
zone and the fault core can host large amounts of fluids of different
origins and compositions (e.g. H2O, CO2)33,34, which play a fun-
damental role as a carrier of 4He that migrates through the crust. In
a conceptual model (Fig. 1) where deformation and the related
seismicity can result in 4He escaping from the minerals and rocks in
which it was produced and accumulated, the fault zones thus
represent (1) the zone of enhanced release of crustal 4He and (2) the
networks of pathways through which fluids preferentially transfer
crustal 4He through the crust towards the atmosphere (Fig. 1).

Several fieldwork and laboratory studies have investigated the
volumetric changes and evolution of the fault core and damage zone
due to tectonics31,35, as well as the relationship between the nature of
the damage zone and earthquake characteristics36,37. However,
damage zone width is generally defined by studies of exhumed
structures. Inconsistencies in calculation of damage zone width (e.g.,
due to subjectivity or ambiguity of definition and measures) makes it
difficult to assess the volume of rocks at depth associated with faults
where crustal 4He release is enhanced. Microearthquakes can revo-
lutionize our approach to the study of crustal phenomena. In recent
decades the development of dense seismic networks worldwide has
generated rich, long-term earthquake catalogues, and micro-
earthquakes can now be used as beacons for observing crustal
processes down to tens of kilometres depth.

Microearthquakes indeed occur on damage zones and, hence,
they allow determining the detailed structure of seismogenic fault
zones at depth, to inquire about the relationships between
earthquake nucleation, rock types and the presence of fluids in
the fault zone38. The outcomes of such analyses provide new
opportunities to decipher the effects of seismicity on Earth
degassing and provide fundamental new insight for reconciling
the dichotomy between the steady-state model and the impulsive
nature of Earth degassing.

Results and discussion
Here, we exploit the role of low magnitude earthquakes (M < 4) on
He degassing in continental regions by computing the variability
of the crustal 4He output over time for the seismogenic volumes of
rock associated to a 12-year-long earthquake catalogue.

This study considered the Irpinia fault zone (hereafter IRPZ) in
central-southern Apennine (Italy) (Fig. 2), a region affected by
major deformational processes in terms of active displacements
and seismogenic processes that have led to high-magnitude dis-
astrous earthquakes (i.e. M= 6.4 in 1561, M= 6.9 in 1694,
M= 5.7 in 1826, M= 5.9 in 1853, M= 7.0 in 1857), with the
most recent being the M= 6.9 Irpinia earthquake in 198039,
which occurred along NW-SE trending normal faults. This latter
large event occurred as a complex rupture process involving
multiple segments (mostly with dip ~60° eastward)39. Due to the
complexity of the tectonics40 and the occurrence of strong
earthquakes, the IRPZ can be considered one of the most
hazardous seismic areas in the Mediterranean region.
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During the last 10 years, seismicity in the IRPZ has been
monitored in real time by the Irpinia Near Fault Observatory
(https://www.epos-eu.org/tcs/near-fault-observatories), which
also includes the Irpinia Seismic Network (ISNet; http://isnet.
fisica.unina.it). The ISNet represents a natural laboratory for
studying fault evolution and rupture processes. In this study we
analysed a 12-year-long earthquake catalogue (from 2008 to
2019) of distributed seismicity in an area of approximately
3700 km2 (ca. 80 km × 46 km). The larger magnitude events
during this 12-year-period have ranged from M= 3.4 (in 2009) to
M= 4.4 (in 2012 and 2019).

The hypocentres of the present-day earthquakes appear to be
spread over a large crustal volume around the fault segments that
generated the M= 6.9 Irpinia earthquake in 1980, spanning
depths from 2 to 20 km (Fig. 2), with a higher density of events at
around 7 km and 12 km in carbonate lithology (Fig. 2).

This sector of central-southern Apennine that coincides with
the IRPZ is characterized by the outgassing of volatiles of deep
origin, and CO2 is the dominant gaseous species7,41,42. Not-
withstanding that the region is far from active volcanism
(>70 km), the He isotopic ratio (3He/4He) in the high-flux CO2

emissions is extremely variable, and peaks at 2.9 Ra (Ra is the
3He/4He value in the atmosphere)42–44. The contribution of the

air-derived He is negligible in all these gas emissions in IRPZ42,43.
This peak value (2.9 Ra) is lower than the typical mantle He
isotopic signature (6.3 Ra for subcontinental lithospheric
mantle)45 and is markedly higher than the typical crustal radio-
genic signature (0.01–0.05 Ra)46, which clearly indicates the
presence of mantle-derived He in the IRPZ that is diluted by
variable contributions of crust-derived 4He. Furthermore, high
crustal radiogenic 4He outputs have also been computed for the
IRPZ (up to 3.74 × 104mol y−1)46 that cannot be explained using
the steady-state model of the whole-crust production and release,
the latter being up to 4 orders of magnitude lower46. This evi-
dence clearly implies that tectonics control the transfer of the
volatiles in this seismically active sector of central-southern
Italy42,43,46, where they play an active role in regional seismicity8,
making this region ideal for investigating the relationship
between earthquakes and He degassing. Furthermore, the He
isotopic signatures in natural fluids here have been constant over
about 20 years of observations, indicating that the mixing of
mantle-crust fluids is not perturbed during long inter-seismic
period46 (Supplementary Note 5).

At the global scale, the crustal 4He flux from continental regions
is 3 × 1010 atoms m–2 s–1, with a variability of a factor 2X22. We
computed the year-by-year steady-state degassing in the IRPZ

Fig. 1 Two-dimensional sketch of earth interior below continents and the atmosphere. Helium escapes from the continents to the atmosphere that
exchanges it with space. In stable continental regions, the crustal radiogenic 4He dominates the output of He and the mantle component is about 1% (more
details are in text). In active tectonic regions, the faults are region of enhanced porosity and permeability and they are the network of pathways through
which fluids preferentially transfer to the atmosphere. Furthermore, the volumes of rocks that constitute the faults zones (damage zone plus fault core) are
extensively deformed and fractured enhancing the release of crustal 4He because of the volumetric stress change. The insert shows a zoomed schematic
representation of the fault zones as fault core plus the damage zone and the adjacent un-deformed rocks.
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(section Whole Crust He degassing in steady-state conditions in
Methods) assuming (1) U and Th contents in the rocks of the
whole crust in the IRPZ of 0.3–1.6 and 0.2–6.1 ppm, respectively47

(Table 1) and (2) a regional crustal thickness of 27 km48. The
annual crustal steady-state 4He flux in the IRPZ ranges from
8.7 × 109 to 2.1 × 1010 atoms m–2 s–1, where the highest
value overlaps the range of the worldwide continental flux
(3 × 1010 atoms m–2 s–1, with a twofold variability)22. The corre-
sponding annual output from the whole crust in the IRPZ ranges
from 1.2 × 103 to 4.8 × 103mol y−1 (Supplementary Table 3).

We also focused on faults that nucleate earthquakes in the
IRPZ. We computed the volumes of both the fault cores and the
damage zones of the seismogenic faults, starting from the cata-
logue of the earthquake source parameters obtained34 for the
~2300 earthquakes that occurred during 2008–2019 (Supple-
mentary Note 3 and 4 and Supplementary Data 1). The volume of
the fault core (Vfc) was calculated for each event, and then the
annual sum was computed (Supplementary note 3), which yielded
Vfc values ranging from 4.4 × 10–8 km3 (sum of Vfc in 2008) to
1.9 × 10–6 km3 (sum of Vfc in 2019). These values are orders of
magnitude lower that the annual whole-crust volume of the IRPZ
(the volume that contains all the hypocentres of the annual
seismicity), which ranged from 7.4 × 104 km3 in 2018 to
1.2 × 105 km3 in 2012 (Supplementary Fig. 1). The steady-state
degassing in the core zone varies over two orders of magnitude,
being between 3.9 × 10–10 and 1.5 × 10–8 mol y−1 (Fig. 3).

However, this is 11–13 orders of magnitudes lower than the
steady-state values in the IRPZ (1.2 × 103 to 4.8 × 103mol y−1;
Fig. 3). Considering that the amount of 4He released from a
deformed volume of rock is up to 104 times higher than the
steady-state value for the same volume of rock23,32, even if the
fault core is intensely deformed, the contribution of the fault-core
crustal 4He to its regional degassing is still negligible, at up to
1.5 × 10–4 mol y−1 (Fig. 3).

In contrast, the estimated volume of the IRPZ damage zone
ranges from 13.1 to 1.8 × 102 km3 (Supplementary Notes 4, Sup-
plementary Table 1), which is up to seven orders of magnitude
higher than that of the fault core (Supplementary Fig. 1). The
steady-state output of crustal 4He from the IRPZ damage zone
varies from 0.1 to 0.9 mol y−1(Supplementary Table 3), which is
even lower than the regional steady-state whole-crust IRPZ
degassing rate (1.2 to 2.0 × 103mol y−1) (Fig. 3). It is worth noting
that annually there is a tenfold variability in the absence of high-
magnitude earthquakes (M < 4.4), supporting the impulsive nature
of crustal 4He degassing associated with the nucleation of earth-
quakes even in absence of high-magnitude earthquakes in the
IRPZ. Furthermore, considering the maximum release of 4He
from the volume of the damage zone due to rock deformation (up
to 104 times the steady-state release)23,32, the annual degassing
rate between 2008 and 2019 for the damage zone is up to
0.9 × 104 mol y−1. This value is equal to or higher than the
regional steady-state degassing rate from the whole non-deformed

Fig. 2 Seismic dataset recorded by ISNet seismic network in the IRPZ area (southern Italy). Distribution of earthquakes represented in map (a) and in
3D (b) with size varying according to magnitude and coloured per hypocentral depth. Historical events with larger magnitudes (M up to 7.0; Rovida et al.,
202054) are represented as yellow stars. ISNet seismic stations are shown as red triangles. Normal faults from the Database of Individual Seismogenic
Sources (http://diss.rm.ingv.it/diss/) are shown as blue lines. The area considered in this study is limited by a red line.

Table 1 Abundances of U and Th (in ppm), crust thickness and density used for calculations of 4He production.

Regional Gloabal Gloabal O-O H Density

U Th ref U Th ref U Th/U ref km g km−3 ref

Carbonates 0.33 0.19 (47) 1.68 6.91 (47) 6.00 3.80 (23) 15.00 2.50·1015 (49)
Granites 4 52 (49) 2.64·1015 (49)
Gabbro 1 3.5 (49) 3.03·1015 (49)
MC 1.6 6.1 (47) 1.3 6.50 (47) 6.00 2.82·1015 (49)
LC 0.29 3.17 (47) 0.6 3.70 (47) 6.00 2.98·1015 (49)
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crust in the IRPZ (Fig. 3). It should be noted that seismicity in the
IRPZ is mainly concentrated within the limestones, which are U-
and Th-poor lithology41 (Table 1). Therefore, notwithstanding (1)
a low crustal 4He production due to the low amount of U and Th
in the seismogenic volume of rocks and (2) an absence of high-
magnitude earthquakes, the degassing rate of crustal 4He from the
seismogenic IRPZ crust, which is so high because of the intense
deformation of the rock that increase the release of 4He from the
rock, (Fig. 3) can be at least equal to that due to the whole and
not-deformed IRPZ continental crust (Fig. 3).

Considering a damage zone involving U- and Th-rich rocks,
such as granite and gabbro that are typical in continental regions
(4 and 52 ppm U and 1 and 3.5 ppm Th)49, and assuming a
volumetric expansion of the damage zone as for the IRPZ, the
output of crustal 4He would be up to ~106 and ~105 mol y-1,
respectively (Supplementary Figs. 2 and 3). Therefore, a volume
of granitic crust in a strongly deformed state can degas up to
~107moles of crustal 4He over 10 years. This amount of out-
gassing would correspond to ~56% of the crustal 4He degassed
during the disastrous earthquake in Kobe in 1995
(1.8 × 107 mol)29 and to ~1.8% of the worldwide steady-state
global degassing (5.4 × 108mol y−1)29.

It is worth noting that the values of crustal 4He released from a
damage zone in granitic rock overlap the high value of crustal
4He output from the large high-temperature geothermal systems
worldwide (e.g. Iceland, New Zealand) and the active volcanoes of
the systems of the southern of Italy (Fig. 3). However, these values
are still lower than the prodigious emission of crustal 4He at
Yellowstone National Park, where crustal metamorphism induced
by a deep hotspot liberates the 4He that has accumulated over
more than 2.5 billion years24. This evidence strongly reinforces
the present finding that earthquake nucleation plays an active role
in the impulsive nature of crustal 4He degassing even in the
absence of high-magnitude earthquakes.

In this scenario, crustal 4He from the seismogenic rock
volumes (Fig. 3) strongly contributes to diluting the mantle-
derived He that has been recognized in worldwide regions asso-
ciated with high-magnitude earthquakes (e.g. San Andreas fault,
USA; southwest Japan; Anatolian fault, Turkey; Belice valley,
Italy)20,30,50–52. According to our results, the contribution from
earthquake-related crustal 4He varies over time and is dependent
upon the extension of fault zones, their lithology and the earth-
quake magnitude. These findings highlight that seismicity plays
an active role in the high variability of the He isotopic signature
in seismic zones, and they contribute quantitatively to explaining
this variability over short distances along different sectors of
faults4,20,42,52,53. Hence, our results clearly indicate that an
increase of the crustal 4He component over time can shift the He
isotopic signature in the natural fluids released in seismic regions
towards a radiogenic endmember (0.01–0.05 Ra), which is indi-
cative of changes in the crustal stress, and hence provides hints
about the preparatory phases of large earthquakes.

Conclusions and future outlooks. Records of sharp increases in
crustal 4He in natural fluids due to rock microscale fracturation
earthquake-related are rare, and the previous records come
exclusively from high-magnitude earthquakes (e.g. that of
1.8 × 107mol in the Kobe earthquake in 1995)29. Our results
indicate that the background seismicity during interseismic per-
iods also controls the impulsive degassing of crustal 4He.
Therefore, coupling geochemical and geophysical long series of
data, the crustal 4He outputs can be used as an indicator of the
expansion of the seismogenic process, thereby making it possible
to assess the volumes of deformed rocks along the faults. Our
study indicates that a high frequency He monitoring is funda-
mental to examine and calibrate regional models capable of
describing the relationship between He degassing and

Fig. 3 Variability of the crustal 4He outputs annual output (2008–2019) of the crustal 4He output (steady state) across the surfaces defined by
earthquakes epicentres in IRPZ. These values of the crustal 4He output are computed by using (1) the U and Th concentrations in the regional lithology,
(2) the areas of the annual epicentres and 3) the crustal thickness below IRPZ (all the data and the equations used in the computations are in
Supplementary Note 1–3). For comparison, we also computed the annual steady state output (2008–2019) of the crustal 4He in IRPZ by using the typical
range of the U and Th concentrations in the continental crust (Table 1). The blue columns represent the steady state annual output of crustal 4He from the
volumes of rocks that characterize the IRPZ faults cores. Here we used the U and Th concentrations of the lithology that constitute the faults cores
(Table 1). The orange columns are the maximum annual output (up to 104 the steady state values) from the same volume of rocks that constitute the faults
cores. The green columns represent the annual steady-state output of crustal 4He from the IRPZ damage zones. Here we used the U and Th concentrations
of the lithology that constitute the damage zones (Table 1). The red columns are the maximum annual output from the same volume of rocks that
constitute the damage zones (up to 104 the steady state values). The error bars represent the interquartile range (Q1–Q3), shown in the Table 2. The 4He
output at the Yellowstone Park are from Lowenstern et al., (2014)24. The mantle 4He output the New Zealand and Iceland volcanic-related geothermal
fields and the Italian volcanic systems are computed by the CO2 outputs54, the mantle C/3He ratios55, and the 3He/4He ratio of these area43,56–60.
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seismogenic processes at depth. Therefore, as already highlighted
in volcanic surveillance15–17, our study emphasizes the need to
use new, field deployable analytical solutions that can allow He
data to be acquired (amounts and isotopic signature) with a
frequency from weekly to daily. These new data could help to
reconstruct the temporal evolution of natural processes such as
volcanic eruption and earthquakes.

This study highlights that a continuous, multidisciplinary,
integrated monitoring approach that includes geochemical and
geophysical observations can be the key to understanding the
mechanisms underlying earthquake generation, and could facil-
itate to figure out premonitory rock deformation processes
preceding the occurrence of a disastrous earthquake. Therefore,
the novel results obtained in this study provide a new paradigm
for studying the genesis of earthquakes and integrating multi-
disciplinary data for improving earthquake forecasts.

Methods
Whole crust He degassing in steady-state conditions. On a 1-Ma timescale, the
flux of 4He from the Earth’s crust to the atmosphere is comparable to the net in situ
production by alpha decay of U- and Th-series elements at the 30–40 km depth of
the crust54, suggesting that the 4He flux exists in the crust and eventually reaches
the atmosphere with a steady flux Liu et al. (2017)55.

The rate of 4He production (and release in S.S. conditions) due to α-decay of U
and Th throughout the crust beneath the study area (QC He in moles per year) is
equivalent to24:

Qc;y ¼
Mc;y

NA
� α ¼ δc � ðSc;y �HcÞ � α ð1Þ

where Mc,y is the annual mass of crust beneath the IRPZ in grams, calculated as
the product of the density and volume of the crust beneath the study area, which is
calculated as the product of the annual surface area (Sc,y) and the crustal thickness,
and according to the local geological sections41 this latter is given by the sum of
carbonate, middle crust and lower crust thicknesses (HC=Hc+HMC+HLC). NA

is the Avogadro constant and α is the crustal production of 4He in molgrams per
year. In turn24

α ¼ 3:115 ´ 106 þ 1:272 ´ 105
� � � U½ � þ 7:710 ´ 105 � ½Th� ð2Þ

where [U] and [Th] are respectively the concentrations of U and Th in the crust in
parts per million by weight respectively23,24.

To compute Qc, we used literature data for the abundances of U and Th and
crust thickness (Supplementary Table 3). In particular, we use three sets of U and
Th concentrations for estimating the Steady-State level for area. Regarding the first
and second set, we base our analysis on the U and Th amounts for a Regional
Refined Reference Model and the Global Refined Reference Model proposed by
Coltorti et al. (2011)47. For the third set (Global O-O steady state), we refer to the
values proposed by O’Nions and Oxburgh 1983)19. Thereafter, we will refer to the
result of these three configurations as the Regional, global and O-O steady-state,
respectively. In addition, in the regional case, we considered granites and gabbro as
alternatives in place of carbonates (see Table 1 for U and Th abundance and
Supplementary Figs. 2 and 3).

4He degassing in no-steady-state conditions. To estimate the crustal 4He epi-
sodic release due to seismic activity, we applied Eq. (2) to the volume related to the
fault core and the damage zone (obtained from Supplementary Eq. 1 and Eq. 2
respectively), by which we obtain the rate of 4He release from fault core (Qfc,y) and
damage zone (Qdz,y) (Supplementary Table 3). Volatile release from the rock
increases as a consequence of dilatancy, and in regions affected by active tectonics
the flux of 4He through the crust should be higher than in volume of rocks without
deformation, where only a steady-state transport system is expected to act27. So, the
release of 4He from rock, which is affected by dilatancy, is from 10 to 104 times
higher than that in un-deformed rock32 (i.e., of Qfc,y and Qdz,y values, see
Table 2), see main text for insights.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information (see also the Methods section). The
raw data (seismic waveforms) for the Irpinia Seismic Network, ISNet (i.e., FDSN code
IX), are available from the Observatories and Research Facilities for European
Seismology European Integrated Data Archive (URL, https://www.orfeus-eu.org/data/
eida/). The ISNet seismic bulletin is available through the URL ‘http://isnet-bulletin.fisica.
unina.it/cgi-bin/isnet-events/isnet.cgi’, while the Data-source parameters are uploaded as
‘Supplementary Data 1’ in the Supplementary Material.
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